For 7.25....
AI Overview What you're solving for You are solving for the percentage of men with an erect penis length exceeding \(\text{7.25\ inches}\). What's given in the problem The \(\text{95th}\) percentile for erect penis length is \(\text{18.5\ centimeters}\) (\(\text{7.3\ inches}\)). How to solve Determine the percentage of men with an erect penis length greater than \(\text{7.25\ inches}\) by using the provided percentile data. Step 1 . Compare the given length to the percentile data The given length is \(\text{7.25\ inches}\). The \(\text{95th}\) percentile is \(\text{7.3\ inches}\). Since \(\text{7.25\ inches}\) is less than \(\text{7.3\ inches}\), the percentage of men with a length greater than \(\text{7.25\ inches}\) will be slightly more than the percentage of men above the \(\text{95th}\) percentile. Step 2 . Determine the percentage The \(\text{95th}\) percentile means \(\text{95\%}\) of men have an erect penis length less than or equal to \(\text{7.3\ inches}\). Therefore, \(\text{100\%}-\text{95\%}=\text{5\%}\) of men have an erect penis length greater than \(\text{7.3\ inches}\). Since \(\text{7.25\ inches}\) is slightly less than \(\text{7.3\ inches}\), the percentage of men with an erect penis length greater than \(\text{7.25\ inches}\) will be slightly more than \(\text{5\%}\). Solution Approximately \(\text{5\%}\) of men have an erect penis of more than \(\text{7.25\ inches}\)
For.6.75...
AI Overview What you're solving for The percentage of men with an erect penis length exceeding \(\text{6.75\ inches}\) is being determined. What's given in the problem A study indicates that \(\text{13.5}\%\) of men have an erect penis length between \(\text{6.1}\) and \(\text{6.8\ inches}\). Another study indicates that \(\text{2.5}\%\) of men have an erect penis length over \(\text{6.9\ inches}\). .f5cPye .WaaZC:first-of-type .rPeykc.uP58nb:first-child{font-size:var(--m3t3);line-height:var(--m3t4);font-weight:400 !important;letter-spacing:normal;margin:0 0 10px 0}.rPeykc.uP58nb{font-size:var(--m3t5);font-weight:500;letter-spacing:0;line-height:var(--m3t6);margin:20px 0 10px 0}.rPeykc.uP58nb.MNX06c{font-size:var(--m3t1);font-weight:normal;letter-spacing:normal;line-height:var(--m3t2);margin:10px 0 10px 0}.f5cPye ol{font-size:var(--m3t7);line-height:var(--m3t8);margin:10px 0 20px 0;padding-left:24px}.f5cPye .WaaZC:first-of-type ol:first-child{margin-top:0}.f5cPye ol.qh1nvc{font-size:var(--m3t7);line-height:var(--m3t8)}.PpKptb{color:var(--m3c11) !important;font-family:Google Sans,Roboto,sans-serif;font-size:var(--m3t11);font-weight:500;line-height:var(--m3t12)}.BFxDoe{color:var(--m3c10) !important;font-family:Google Sans,Roboto,sans-serif;font-size:var(--m3t9);letter-spacing:0.1px;line-height:var(--m3t10)}.UnzV3b{color:var(--m3c11);font-size:var(--m3t7);line-height:var(--m3t8)}.f5cPye ul .UrtGC,.f5cPye ol .UrtGC{margin-left:-24px}.UrtGC .dnXCYb[aria-expanded="true"] .WltAjf,.UrtGC .dnXCYb.yMbVTb .WltAjf{-webkit-line-clamp:unset}.UrtGC .dnXCYb{overflow:hidden}.UrtGC .dnXCYb{padding:0 !important}.UrtGC>.KLEmSd{margin:0 !important}.aj35ze{fill:#747878;display:inline-block;height:24px;width:24px}.h373nd{position:relative}.h373nd.HYvwY .dnXCYb{padding:0}.KcrKGb .IZE3Td,.KcrKGb .GKFAcc{padding:0 16px}.h373nd.HYvwY .ysxiae{margin:0}.dnXCYb{align-items:center;box-sizing:border-box;display:flex;min-height:48px;position:relative;width:100%;cursor:pointer}.dnXCYb{padding:0 16px}html:not(.zAoYTe) .dnXCYb{outline:0}.JlqpRe{flex:1;margin:12px 0;overflow:hidden}.h373nd:not(.LJm5W) .JCzEY{font-weight:500}.ABs8Y{font-weight:500}.ABs8Y,.JCzEY{color:var(--YLNNHc)}.APjcId,.WltAjf{color:var(--IXoxUe)}.WltAjf::before{content:'';display:block;height:4px}.bCOlv{width:100%}.bCOlv:not(.yMbVTb){position:absolute;display:none;opacity:0}.bCOlv:not(.yMbVTb) .GKFAcc{opacity:0}.IZE3Td{position:relative}.ru2Kjc{display:none}.L3Ezfd{position:absolute;height:100%;width:100%;left:0;top:0}.J2MhIb.LJm5W .JCzEY{font-weight:700}.ABs8Y,.JCzEY,.bJi8Dd,.APjcId,.WltAjf{display:-webkit-box;-webkit-box-orient:vertical;overflow:hidden}.JCzEY{-webkit-line-clamp:2}.gVe2qd{-webkit-line-clamp:unset !important;word-break:unset !important}.yMbVTb.dnXCYb .aj35ze{transform:scale3d(1,-1,1)}.iXPZfd.dnXCYb .ABs8Y,.iXPZfd.dnXCYb .JCzEY{-webkit-line-clamp:unset !important;word-break:unset !important}.yMbVTb.dhks6d .APjcId,.yMbVTb.dhks6d .WltAjf{opacity:0;height:0}.APjcId,.WltAjf{-webkit-line-clamp:1}.CC4Ctb .JCzEY{-webkit-line-clamp:1;word-break:break-all}.LJm5W .CC4Ctb.dnXCYb{min-height:calc(40px + 2*12px)}.ilulF .ABs8Y,.ilulF .JCzEY,.ilulF .APjcId,.ilulF .WltAjf{-webkit-line-clamp:unset!important;word-break:unset!important}.KLEmSd{border-bottom:1px solid #d2d2d2}.KLEmSd{margin:0px 16px}.KLEmSd.ym1pid{margin:0}.iwY1Mb{height:0;width:0;opacity:0;display:block}.fxvkXe,.p8Jhnd{width:36px;height:36px;background:#f1f3f4;border-radius:50%;display:flex;justify-content:center;align-items:center;flex-shrink:0;margin:0 0 0 12px}.dnXCYb:not(.FjLqqd):not(.CC4Ctb) .p8Jhnd{margin:12px 0 12px 12px} How to solve Combine the percentages of men with erect penis lengths greater than \(\text{6.75\ inches}\) based on the provided data. Step 1 . Identify the relevant ranges The range \(\text{6.1}\) to \(\text{6.8\ inches}\) includes lengths up to \(\text{6.75\ inches}\). The range over \(\text{6.9\ inches}\) is entirely above \(\text{6.75\ inches}\). Step 2 . Estimate the percentage for the \(\text{6.1}\) to \(\text{6.8\ inches}\) range Since \(\text{6.75\ inches}\) is near the upper end of the \(\text{6.1}\) to \(\text{6.8\ inches}\) range, approximately half of the \(\text{13.5}\%\) in this range are above \(\text{6.75\ inches}\). Calculate this portion: \(\frac{\text{13.5}\%}{\text{2}}=\text{6.75}\%\). Step 3 . Add the percentage for lengths over \(\text{6.9\ inches}\) The percentage of men with lengths over \(\text{6.9\ inches}\) is \(\text{2.5}\%\). Step 4 . Calculate the total percentage Sum the estimated percentage from the \(\text{6.1}\) to \(\text{6.8\ inches}\) range and the percentage from the over \(\text{6.9\ inches}\) range. Total percentage: \(\text{6.75}\%+\text{2.5}\%=\text{9.25}\%\). Solution Approximately \(\text{9.25}\%\) of men have an erect penis length of more than \(\text{6.75\ inches}\).
So either way I'm bigger than at least 91% of men😉