No. Just no.
SUCKMYMUSCLE
A Review of Issues of Dietary Protein Intake in Humans
The key issues are the rate at which the gastrointestinal tract can absorb amino acids from dietary proteins (1.3 to 10 g/h) and the liver's capacity to deaminate proteins and produce urea for excretion of excess nitrogen. The accepted level of protein requirement of 0.8g ∙ kg-1 ∙ d-1 is based on structural requirements and ignores the use of protein for energy metabolism. High protein diets on the other hand advocate excessive levels of protein intake on the order of 200 to 400 g/d. The three different measures of defining protein intake, which should be viewed together are: absolute intake (g/d), intake related to body weight (g ∙ kg-1 ∙ d-1) and intake as a fraction of total energy (percent energy).
Rapidly absorbed amino acids despite stimulating greater protein synthesis, also stimulate greater amino acid oxidation, and hence results in a lower net protein gain, than slowly absorbed protein (54). Leucine balance, a measurable endpoint for protein balance, is indicated in Figure 1, which shows slowly absorbed amino acids (~ 6 to 7 g/h), such as CAS and 2.3 g of WP repeatedly taken orally every 20 min (RPT-WP), provide significantly better protein balance than rapidly absorbed amino acids (39, 54).
The misconception in the fitness and sports industries is that rapidly absorbed protein, such as WP and AA promote better protein anabolism. As the graph shows, slowly absorbed protein such as CAS and small amounts of WP (RPT-WP) provide four and nine times more protein synthesis than WP.
Using the findings of amino acid absorption rates shown in Table 2 (using leucine balance as a measurable endpoint for protein balance), a maximal amino acid intake measured by the inhibition of proteolysis and increase in postprandial protein gain, may only be ~ 6 to 7 g/h (as described by RPT-WP, and casein) (38), which corresponds to a maximal protein intake of 144 to 168 g/d.
From our earlier calculations elucidating the maximal amounts of protein intake from MRUS, an 80 kg subject could theoretically tolerate up to 301 to 365 g of protein per day, but this would require an absorption rate of 12.5 to 15 g/h, an unlikely level given the results of the studies reported above.
Some evidence suggests, however, that a high protein diet increases leucine oxidation (82, 83), while other data demonstrate that the slower digestion rate of protein (38, 54), and the timing of protein ingestion (with resistance training) (84) promote muscle protein synthesis.
Absorption rates of amino acids from the gut can vary from 1.4 g/h for raw egg white to
8 to 10 g/h for whey protein isolate. Slowly absorbed amino acids such as casein (~ 6 g/h) and repeated small doses of whey protein (2.9 g per 20 min, totaling ~ 7 g/h) promote leucine balance, a marker of protein balance, superior to that of a single dose of 30 g of whey protein or free amino acids which are both rapidly absorbed (8 to 10 g/h), and enhance amino acid oxidation. This gives us an initial understanding that although higher protein intakes are physiologically possible, and tolerable by the human body, they may not be functionally optimal in terms of building and preserving body protein. The general, although incorrect consensus among athletes and bodybuilders, is that rapid protein absorption corresponds to greater muscle building.